Modelling time-kill studies to discern the pharmacodynamics of meropenem.
نویسندگان
چکیده
OBJECTIVES Time-kill studies are commonly used in investigations of new antimicrobial agents. However, they typically provide descriptive information on pharmacodynamics. We developed a mathematical model to capture the relationship between microbial burden and antimicrobial agent concentrations. METHODS Time-kill studies were performed with 10(8) cfu/mL of Pseudomonas aeruginosa at baseline. Meropenem at 0, 0.25, 1, 4, 16 and 64 x MIC was used (MIC = 1 mg/L). Serial samples were obtained to quantify bacterial burden over 24 h. The data were analysed by a population analysis using the non-parametric adaptive grid program. The rate of change of bacteria over time was expressed as the difference between linear bacterial growth rate and sigmoidal kill rate. Regrowth was attributed to adaptation, which was explicitly modelled as increase in C(50k) (concentration to achieve 50% maximal kill rate), using a saturable function of selective pressure (both meropenem concentration and time). RESULTS The best-fit model consisted of eight parameters and the fit to the data was satisfactory. The r2 of maximum a-posteriori probability Bayesian predictions based on the mean parameter estimates was 0.984. Maximal killing rate at baseline was found to be 4.7 h(-1); C(90k) was achieved with meropenem at 5.0 mg/L. The model was validated by time-kill studies using 2x and 32x MIC of meropenem. CONCLUSIONS Our model reasonably described and predicted the time course of P. aeruginosa in time-kill studies, and provided quantitative information on the pharmacodynamics of meropenem. The structural model appeared robust and could be used to provide a realistic expectation of the killing performance of antimicrobial agents.
منابع مشابه
Comparative in vitro pharmacodynamics of imipenem and meropenem against Pseudomonas aeruginosa.
MICs are commonly used to assess the in vitro activities of antimicrobial agents; however, they provide minimal information on the pattern of bacterial activities. Time-kill studies with extensive sampling allow assessment of both the rate and extent of bacterial killing and regrowth. We compared imipenem and meropenem by both MIC-MBC testing and a time-kill study with P. aeruginosa 27853. In t...
متن کاملMathematical modelling response of Pseudomonas aeruginosa to meropenem.
OBJECTIVES Widespread emergence of resistance to antimicrobial agents is a serious problem. The rate at which new agents are made available clinically is unlikely to keep up with these resistant pathogens, and there is an urgent need to accelerate antimicrobial agent development. We explored the use of mathematical modelling to guide selection of dosing regimens. METHODS Using time-kill studi...
متن کاملPenetration of meropenem into epithelial lining fluid of patients with ventilator-associated pneumonia.
Antibiotic penetration to the infection site is critical for obtaining a good clinical outcome in patients with ventilator-associated pneumonia (VAP). Surprisingly few studies have quantified the penetration of β-lactam agents into the lung, as measured by the ratio of area under the concentration-time curve (AUC) in epithelial lining fluid (ELF) to AUC in plasma (AUC(ELF)/AUC(plasma) ratio). T...
متن کاملIn vitro pharmacodynamics of various antibiotics in combination against extensively drug-resistant Klebsiella pneumoniae.
Extensively drug-resistant (XDR) Klebsiella pneumoniae is an emerging pathogen in Singapore. With limited therapeutic options available, combination antibiotics may be the only viable option. In this study, we aimed to elucidate effective antibiotic combinations against XDR K. pneumoniae isolates. Six NDM-1-producing and two OXA-181-producing K. pneumoniae strains were exposed to 12 antibiotics...
متن کاملMathematical corrections for bacterial loss in pharmacodynamic in vitro dilution models.
In vitro dilution models are used to simulate in vivo drug concentration-time profiles and thus to study the effects of various antibiotic concentrations on the bacteria investigated. The major disadvantage of these models is permanent dilution of the bacterial culture, which falsifies the resulting kill curves. Known equations, which usually correct bacterial loss by simple first-order kinetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of antimicrobial chemotherapy
دوره 55 5 شماره
صفحات -
تاریخ انتشار 2005